When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  3. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    Fanning friction factor for tube flow. This friction factor is one-fourth of the Darcy friction factor, so attention must be paid to note which one of these is meant in the "friction factor" chart or equation consulted. Of the two, the Fanning friction factor is the more commonly used by chemical engineers and those following the British ...

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    If the value of the friction factor is 0.016, then the Fanning friction factor is plotted in the Moody diagram. Note that the nonzero digits in 0.016 are the numerator in the formula for the laminar Fanning friction factor: f = ⁠ 16 / Re ⁠. The procedure above is similar for any available Reynolds number that is an integer power of ten.

  5. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Before choosing a formula it is worth knowing that in the paper on the Moody chart, Moody stated the accuracy is about ±5% for smooth pipes and ±10% for rough pipes. If more than one formula is applicable in the flow regime under consideration, the choice of formula may be influenced by one or more of the following:

  6. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Assuming the Fanning friction factor is a constant along the duct wall, the differential equation can be solved easily. [2] [3] One must keep in mind, however, that the value of the Fanning friction factor can be difficult to determine for supersonic and especially hypersonic flow velocities.

  7. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  8. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Moody diagram, which describes the Darcy–Weisbach friction factor f as a function of the Reynolds number and relative pipe roughness. Pressure drops [ 28 ] seen for fully developed flow of fluids through pipes can be predicted using the Moody diagram which plots the Darcy–Weisbach friction factor f against Reynolds number Re and ...

  9. Minor losses in pipe flow - Wikipedia

    en.wikipedia.org/wiki/Minor_Losses_in_pipe_flow

    = Fanning friction factor ∑ i e v , i {\displaystyle \sum _{i}e_{v,i}} = Sum of all kinetic energy factors in system Once calculated, the total head loss can be used to solve the Bernoulli Equation and find unknown values of the system.