When.com Web Search

  1. Ads

    related to: curvature k calculator calculus equation book pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    The second equation, called the Codazzi equation or Codazzi-Mainardi equation, states that the covariant derivative of the second fundamental form is fully symmetric. It is named for Gaspare Mainardi (1856) and Delfino Codazzi (1868–1869), who independently derived the result, [ 3 ] although it was discovered earlier by Karl Mikhailovich ...

  3. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Curves on a surface which minimize length between the endpoints are called geodesics; they are the shape that an elastic band stretched between the two points would take. Mathematically they are described using ordinary differential equations and the calculus of variations. The differential geometry of surfaces revolves around the study of ...

  4. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    At such points, the surface will be saddle shaped. Because one principal curvature is negative, one is positive, and the normal curvature varies continuously if you rotate a plane orthogonal to the surface around the normal to the surface in two directions, the normal curvatures will be zero giving the asymptotic curves for that point.

  5. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  6. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  7. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Thus the Gaussian curvature is an intrinsic invariant of a surface. Gauss presented the theorem in this manner (translated from Latin): Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.

  8. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    To be a C r-loop, the function γ must be r-times continuously differentiable and satisfy γ (k) (a) = γ (k) (b) for 0 ≤ k ≤ r. The parametric curve is simple if | (,): (,) is injective. It is analytic if each component function of γ is an analytic function, that is, it is of class C ω.

  9. Scalar curvature - Wikipedia

    en.wikipedia.org/wiki/Scalar_curvature

    Given a Riemannian metric g, the scalar curvature Scal is defined as the trace of the Ricci curvature tensor with respect to the metric: [1] = ⁡. The scalar curvature cannot be computed directly from the Ricci curvature since the latter is a (0,2)-tensor field; the metric must be used to raise an index to obtain a (1,1)-tensor field in order to take the trace.