When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) – g(x). Thus root-finding algorithms can be used to solve any equation of continuous functions. However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that ...

  3. Microsoft Math Solver - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Math_Solver

    Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.

  4. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    This means that 1 is a root of multiplicity 2, and −4 is a simple root (of multiplicity 1). The multiplicity of a root is the number of occurrences of this root in the complete factorization of the polynomial, by means of the fundamental theorem of algebra.

  5. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    be the general quartic equation we want to solve. Dividing by a 4, provides the equivalent equation x 4 + bx 3 + cx 2 + dx + e = 0, with b = ⁠ a 3 / a 4 ⁠, c = ⁠ a 2 / a 4 ⁠, d = ⁠ a 1 / a 4 ⁠, and e = ⁠ a 0 / a 4 ⁠. Substituting y − ⁠ b / 4 ⁠ for x gives, after regrouping the terms, the equation y 4 + py 2 + qy + r = 0, where

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The most efficient algorithms allow solving easily (on a computer) polynomial equations of degree higher than 1,000 (see Root-finding algorithm). For polynomials with more than one indeterminate, the combinations of values for the variables for which the polynomial function takes the value zero are generally called zeros instead of

  7. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    This exponential behavior makes solving polynomial systems difficult and explains why there are few solvers that are able to automatically solve systems with Bézout's bound higher than, say, 25 (three equations of degree 3 or five equations of degree 2 are beyond this bound). [citation needed]

  8. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  9. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.