Search results
Results From The WOW.Com Content Network
Public-key cryptosystems use a public key for encryption and a private key for decryption. Diffie–Hellman key exchange; RSA encryption; Rabin cryptosystem; Schnorr signature; ElGamal encryption; Elliptic-curve cryptography; Lattice-based cryptography; McEliece cryptosystem; Multivariate cryptography; Isogeny-based cryptography
The algorithm generates a keystream, a sequence of values which are combined with the message to encrypt and decrypt it. Each value of the keystream is used to encrypt one character of the message, so the keystream must be at least as long as the message. If the keystream is longer than the message, the message may be padded with an additional ...
The method became known as the Diffie-Hellman key exchange. RSA (Rivest–Shamir–Adleman) is another notable public-key cryptosystem. Created in 1978, it is still used today for applications involving digital signatures. [17] Using number theory, the RSA algorithm selects two prime numbers, which help generate both the encryption and ...
Modern encryption methods can be divided into the following categories: Private-key cryptography (symmetric key algorithm): one shared key is used for encryption and decryption; Public-key cryptography (asymmetric key algorithm): two different keys are used for encryption and decryption
In cryptography, the Tiny Encryption Algorithm (TEA) is a block cipher notable for its simplicity of description and implementation, typically a few lines of code.It was designed by David Wheeler and Roger Needham of the Cambridge Computer Laboratory; it was first presented at the Fast Software Encryption workshop in Leuven in 1994, and first published in the proceedings of that workshop.
The encryption process consists of updating the state with four round functions over 10 rounds. The four round functions are SubBytes (SB), ShiftColumns (SC), MixRows (MR) and AddRoundKey (AK). During each round the new state is computed as S = A K ∘ M R ∘ S C ∘ S B ( S ) {\displaystyle S=AK\circ MR\circ SC\circ SB(S)} .
For example, an application may want to encrypt 100-bit values with AES in a way that creates another 100-bit value. With this technique, AES-128-ECB encryption can be applied until it reaches a value which has all of its 28 highest bits set to 0, which will take an average of 2 28 iterations to happen.
A large number of block ciphers use the scheme, including the US Data Encryption Standard, the Soviet/Russian GOST and the more recent Blowfish and Twofish ciphers. In a Feistel cipher, encryption and decryption are very similar operations, and both consist of iteratively running a function called a "round function" a fixed number of times.