Ad
related to: problems computers can't solve 1 2 1 10 as a percent of 20pchelpsoft.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
For example, if s=2, then 𝜁(s) is the well-known series 1 + 1/4 + 1/9 + 1/16 + …, which strangely adds up to exactly 𝜋²/6. When s is a complex number—one that looks like a+b𝑖, using ...
Then we are told that the 1st part is not sped up, so s1 = 1, while the 2nd part is sped up 5 times, so s2 = 5, the 3rd part is sped up 20 times, so s3 = 20, and the 4th part is sped up 1.6 times, so s4 = 1.6. By using Amdahl's law, the overall speedup is
Algorithms from P to NP, volume 1 - Design and Efficiency. Redwood City, California: Benjamin/Cummings Publishing Company, Inc. Discusses intractability of problems with algorithms having exponential performance in Chapter 2, "Mathematical techniques for the analysis of algorithms." Weinberger, Shmuel (2005). Computers, rigidity, and moduli ...
Reddit users went back and forth as to what the answer to the solution could possibly be, suggesting answers ranging from “some” to “{15 – n n ∈ ℤ, 1<n<15}.”
The problem has been called the most important open problem in computer science. [1] Aside from being an important problem in computational theory , a proof either way would have profound implications for mathematics, cryptography , algorithm research, artificial intelligence , game theory , multimedia processing, philosophy , economics and ...
The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of 1 / 2 . A proof or disproof of this would have far-reaching implications in number theory, especially for the distribution of prime ...