When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    In contrast to an average velocity, referring to the overall motion in a finite time interval, the instantaneous velocity of an object describes the state of motion at a specific point in time. It is defined by letting the length of the time interval Δ t {\displaystyle \Delta t} tend to zero, that is, the velocity is the time derivative of the ...

  4. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.

  5. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  6. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    Displacement is the shift in location when an object in motion changes from one position to another. [2] For motion over a given interval of time, the displacement divided by the length of the time interval defines the average velocity (a vector), whose magnitude is the average speed (a scalar quantity).

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  8. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; [2] the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed is the magnitude of velocity (a vector), which indicates additionally the direction of ...

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    A positive average velocity means that the position coordinate increases over the interval in question, a negative average velocity indicates a net decrease over that interval, and an average velocity of zero means that the body ends the time interval in the same place as it began.