When.com Web Search

  1. Ad

    related to: curvature k calculator calculus equation generator 2 4

Search results

  1. Results From The WOW.Com Content Network
  2. Twisted cubic - Wikipedia

    en.wikipedia.org/wiki/Twisted_cubic

    The twisted cubic has the following properties: It is the set-theoretic complete intersection of and () (), but not a scheme-theoretic or ideal-theoretic complete intersection; meaning to say that the ideal of the variety cannot be generated by only 2 polynomials; a minimum of 3 are needed.

  3. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  5. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n.. For a general oriented k-submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian ~,, i.e. the set of all oriented k-planes in R n.

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    In the language of tensor calculus, making use of natural metrics and connections on tensor bundles, the Gauss equation can be written as H 2 − |h| 2 = R and the two Codazzi equations can be written as ∇ 1 h 12 = ∇ 2 h 11 and ∇ 1 h 22 = ∇ 2 h 12; the complicated expressions to do with Christoffel symbols and the first fundamental form ...

  7. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2. The sign of the Gaussian curvature can be used to characterise the surface. If both principal curvatures are of the same sign: κ 1 κ 2 > 0, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface ...

  8. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In this context, the first equation, often called the Gauss equation (after its discoverer Carl Friedrich Gauss), says that the Gauss curvature of the surface, at any given point, is dictated by the derivatives of the Gauss map at that point, as encoded by the second fundamental form. [2] The second equation, called the Codazzi equation or ...

  9. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    According to problem 25 in Kühnel's "Differential Geometry Curves – Surfaces – Manifolds", it is also true that two Bertrand curves that do not lie in the same two-dimensional plane are characterized by the existence of a linear relation a κ(t) + b τ(t) = 1 where κ(t) and τ(t) are the curvature and torsion of γ 1 (t) and a and b are ...