Search results
Results From The WOW.Com Content Network
A generalization of the notion of a set is that of a multiset or bag, which is similar to a set but allows repeated ("equal") values (duplicates). This is used in two distinct senses: either equal values are considered identical, and are simply counted, or equal values are considered equivalent, and are stored as distinct items. For example ...
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate.
A snippet of Python code with keywords highlighted in bold yellow font. The syntax of the Python programming language is the set of rules that defines how a Python program will be written and interpreted (by both the runtime system and by human readers). The Python language has many similarities to Perl, C, and Java. However, there are some ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Given a set A, the identity function on A is a bijection from A to itself, showing that every set A is equinumerous to itself: A ~ A. Symmetry For every bijection between two sets A and B there exists an inverse function which is a bijection between B and A, implying that if a set A is equinumerous to a set B then B is also equinumerous to A: A ...
SETL (SET Language) is a very high-level programming language [1] based on the mathematical theory of sets. [2] [3] It was originally developed at the New York University (NYU) Courant Institute of Mathematical Sciences in the late 1960s, by a group containing (Jack) Jacob T. Schwartz, [1] [3] R.B.K. Dewar, and E. Schonberg. [1]