Search results
Results From The WOW.Com Content Network
The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.
In linear algebra, a skew-Hamiltonian matrix is a specific type of matrix that corresponds to a skew-symmetric bilinear form on a symplectic vector space. Let be a vector space equipped with a symplectic form, denoted by Ω. A symplectic vector space must necessarily be of even dimension.
Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator [1] represented in an orthonormal basis over a real inner product space.
The Plücker matrix is a special skew-symmetric 4 × 4 matrix, which characterizes a straight line in projective space. The matrix is defined by 6 Plücker coordinates with 4 degrees of freedom . It is named after the German mathematician Julius Plücker .
Skew-symmetric graph; Self-complementary graph; In mathematics, especially linear algebra, and in theoretical physics, the adjective antisymmetric (or skew-symmetric) is used for matrices, tensors, and other objects that change sign if an appropriate operation (e.g. matrix transposition) is performed. See:
A hollow matrix may be a square matrix whose diagonal elements are all equal to zero. [3] That is, an n × n matrix A = (a ij) is hollow if a ij = 0 whenever i = j (i.e. a ii = 0 for all i). The most obvious example is the real skew-symmetric matrix. Other examples are the adjacency matrix of a finite simple graph, and a distance matrix or ...
Hankel matrix: A matrix with constant skew-diagonals; also an upside down Toeplitz matrix. A square Hankel matrix is symmetric. Hermitian matrix: A square matrix which is equal to its conjugate transpose, A = A *. Hessenberg matrix: An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal.
Conversely, let Q be any orthogonal matrix which does not have −1 as an eigenvalue; then = (+) is a skew-symmetric matrix. (See also: Involution.) The condition on Q automatically excludes matrices with determinant −1, but also excludes certain special orthogonal matrices.