When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  3. Davenport diagram - Wikipedia

    en.wikipedia.org/wiki/Davenport_diagram

    Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”

  4. Anaerobic glycolysis - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_glycolysis

    Anaerobic glycolysis is the transformation of glucose to lactate when limited amounts of oxygen (O 2) are available. [1] This occurs in health as in exercising and in disease as in sepsis and hemorrhagic shock. [1] providing energy for a period ranging from 10 seconds to 2 minutes.

  5. Blood sugar regulation - Wikipedia

    en.wikipedia.org/wiki/Blood_sugar_regulation

    Ball-and-stick model of a glucose molecule. Blood sugar regulation is the process by which the levels of blood sugar, the common name for glucose dissolved in blood plasma, are maintained by the body within a narrow range. The regulation of glucose levels through Homeostasis. This tight regulation is referred to as glucose homeostasis.

  6. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].

  7. Respiratory compensation - Wikipedia

    en.wikipedia.org/wiki/Respiratory_compensation

    However, as there is limitation for decreasing respiration, respiratory compensation is less efficient at compensating for metabolic alkalosis than for acidosis. [4] The respiratory brainstem centers can only compensate for metabolic acid-base disturbances (metabolic acidosis and metabolic alkalosis).

  8. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glucose (blood sugar) is distributed to cells in the tissues, where it is broken down via cellular respiration, or stored as glycogen. [ 3 ] [ 4 ] In cellular (aerobic) respiration, glucose and oxygen are metabolized to release energy, with carbon dioxide and water as endproducts.

  9. Lactic acidosis - Wikipedia

    en.wikipedia.org/wiki/Lactic_acidosis

    If there is no oxygen available for the parts of the glucose metabolism that require oxygen (citric acid cycle and oxidative phosphorylation), excess pyruvate will be converted in excess lactate. In "type B" lactic acidosis the lactate accumulates because there is a mismatch between glycolysis activity and the remainder of glucose metabolism.