When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/.../Continuous_or_discrete_variable

    In probability theory and statistics, the probability distribution of a mixed random variable consists of both discrete and continuous components. A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue.

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...

  4. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [ 10 ] An example of a random variable of mixed type would be based on an experiment where a coin is flipped and the spinner is spun only if the result of the ...

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    To define probability distributions for the specific case of random variables (so the sample space can be seen as a numeric set), it is common to distinguish between discrete and absolutely continuous random variables. In the discrete case, it is sufficient to specify a probability mass function assigning a probability to each possible outcome ...

  6. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.

  7. Random field - Wikipedia

    en.wikipedia.org/wiki/Random_field

    Suppose each random variable can take on the value of -1 or 1, and the probability of each random variable's value depends on its immediately adjacent neighbours. This is a simple example of a discrete random field. More generally, the values each can take on might be defined over a continuous domain. In larger grids, it can also be useful to ...

  8. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    One example of a situation in which one may wish to find the cumulative distribution of one random variable which is continuous and another random variable which is discrete arises when one wishes to use a logistic regression in predicting the probability of a binary outcome Y conditional on the value of a continuously distributed outcome .

  9. Symmetric probability distribution - Wikipedia

    en.wikipedia.org/wiki/Symmetric_probability...

    The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2] For continuous symmetric spherical, Mir M. Ali gave the following definition.