When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graphene - Wikipedia

    en.wikipedia.org/wiki/Graphene

    Turbostratic graphene exhibits weak interlayer coupling, and the spacing is increased with respect to Bernal-stacked multilayer graphene. Rotational misalignment preserves the 2D electronic structure, as confirmed by Raman spectroscopy. [206] The D peak is very weak, whereas the 2D and G peaks remain prominent. [206]

  3. Graphene production techniques - Wikipedia

    en.wikipedia.org/wiki/Graphene_production_techniques

    A rapidly increasing list of graphene production techniques have been developed to enable graphene's use in commercial applications. [1]Isolated 2D crystals cannot be grown via chemical synthesis beyond small sizes even in principle, because the rapid growth of phonon density with increasing lateral size forces 2D crystallites to bend into the third dimension. [2]

  4. Potential applications of graphene - Wikipedia

    en.wikipedia.org/wiki/Potential_applications_of...

    Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials, and favoured by massive cost decreases in graphene production.

  5. Electronic properties of graphene - Wikipedia

    en.wikipedia.org/wiki/Electronic_properties_of...

    The electronic properties of graphene are significantly influenced by the supporting substrate. [59] [60] The Si(100)/H surface does not perturb graphene's electronic properties, whereas the interaction between it and the clean Si(100) surface changes its electronic states significantly. This effect results from the covalent bonding between C ...

  6. Graphene plasmonics - Wikipedia

    en.wikipedia.org/wiki/Graphene_plasmonics

    So far, the graphene plasmonic effects have been demonstrated for different applications ranging from light modulation [15] [16] to biological/chemical sensing. [17] [18] [19] High-speed photodetection at 10 Gbit/s based on graphene and 20-fold improvement on the detection efficiency through graphene/gold nanostructure were also reported. [20]

  7. Joule heating - Wikipedia

    en.wikipedia.org/wiki/Joule_heating

    Flash joule heating (transient high-temperature electrothermal heating) has been used to synthesize allotropes of carbon, including graphene and diamond. Heating various solid carbon feedstocks (carbon black, coal, coffee grounds, etc.) to temperatures of ~3000 K for 10-150 milliseconds produces turbostratic graphene flakes. [17]

  8. Boron nitride - Wikipedia

    en.wikipedia.org/wiki/Boron_nitride

    The most stable crystalline form is the hexagonal one, also called h-BN, α-BN, g-BN, graphitic boron nitride and "white graphene". Hexagonal boron nitride (point group = D 3h; space group = P6 3 /mmc) has a layered structure similar to graphite.

  9. Graphene morphology - Wikipedia

    en.wikipedia.org/wiki/Graphene_morphology

    Bilayer graphene displays the anomalous quantum Hall effect, a tunable band gap [3] and potential for excitonic condensation. [4] Bilayer graphene typically can be found either in twisted configurations where the two layers are rotated relative to each other or graphitic Bernal stacked configurations where half the atoms in one layer lie atop half the atoms in the other. [5]