When.com Web Search

  1. Ads

    related to: free dot paper for geometry problems pdf book 5 lesson 8 eureka math grade 2

Search results

  1. Results From The WOW.Com Content Network
  2. Napkin folding problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_folding_problem

    The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...

  3. Missing square puzzle - Wikipedia

    en.wikipedia.org/wiki/Missing_square_puzzle

    The apparent triangles formed from the figures are 13 units wide and 5 units tall, so it appears that the area should be S = ⁠ 13×5 / 2 ⁠ = 32.5 units. However, the blue triangle has a ratio of 5:2 (=2.5), while the red triangle has the ratio 8:3 (≈2.667), so the apparent combined hypotenuse in each figure is actually bent.

  4. Nine dots puzzle - Wikipedia

    en.wikipedia.org/wiki/Nine_dots_puzzle

    The "nine dots" puzzle. The puzzle asks to link all nine dots using four straight lines or fewer, without lifting the pen. The nine dots puzzle is a mathematical puzzle whose task is to connect nine squarely arranged points with a pen by four (or fewer) straight lines without lifting the pen or retracing any lines.

  5. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements. [ 21 ] [ 22 ] The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines, planes and circles in the Euclidean plane ( plane geometry ) and the three ...

  6. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Cheng's eigenvalue comparison theorem (Riemannian geometry) Chern–Gauss–Bonnet theorem (differential geometry) Chevalley's structure theorem (algebraic geometry) Chevalley–Shephard–Todd theorem (finite group) Chevalley–Warning theorem (field theory) Chinese remainder theorem (number theory) Choi's theorem on completely positive maps ...

  7. Moser's worm problem - Wikipedia

    en.wikipedia.org/wiki/Moser's_worm_problem

    The problem remains open, but over a sequence of papers researchers have tightened the gap between the known lower and upper bounds. In particular, Norwood & Poole (2003) constructed a (nonconvex) universal cover and showed that the minimum shape has area at most 0.260437; Gerriets & Poole (1974) and Norwood, Poole & Laidacker (1992) gave ...

  8. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    For example, using a compass, straightedge, and a piece of paper on which we have the parabola y=x 2 together with the points (0,0) and (1,0), one can construct any complex number that has a solid construction. Likewise, a tool that can draw any ellipse with already constructed foci and major axis (think two pins and a piece of string) is just ...

  9. Isoperimetric inequality - Wikipedia

    en.wikipedia.org/wiki/Isoperimetric_inequality

    The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length. [1] The closely related Dido's problem asks for a region of the maximal area bounded by a straight line and a curvilinear arc whose endpoints belong to that line.