When.com Web Search

  1. Ads

    related to: quadratic sieve calculator formula for kids 3 4 motorcycle helmets

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve.

  3. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler rational sieve or quadratic sieve. When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2.

  4. Magma (computer algebra system) - Wikipedia

    en.wikipedia.org/wiki/Magma_(computer_algebra...

    Integer factorization algorithms include the Elliptic Curve Method, the Quadratic sieve and the Number field sieve. Algebraic number theory; Magma includes the KANT computer algebra system for comprehensive computations in algebraic number fields. A special type also allows one to compute in the algebraic closure of a field. Module theory and ...

  5. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Let Δ be a negative integer with Δ = −dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form. Take the t first primes p 1 = 2, p 2 = 3, p 3 = 5, ..., p t, for some t ∈ N. Let f q be a random prime form of G Δ with (⁠ Δ / q ⁠) = 1. Find a generating set X of G Δ.

  6. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The sieve methods discussed in this article are not closely related to the integer factorization sieve methods such as the quadratic sieve and the general number field sieve. Those factorization methods use the idea of the sieve of Eratosthenes to determine efficiently which members of a list of numbers can be completely factored into small primes.

  7. Lenstra elliptic-curve factorization - Wikipedia

    en.wikipedia.org/wiki/Lenstra_elliptic-curve...

    The second-fastest is the multiple polynomial quadratic sieve, and the fastest is the general number field sieve. The Lenstra elliptic-curve factorization is named after Hendrik Lenstra . Practically speaking, ECM is considered a special-purpose factoring algorithm, as it is most suitable for finding small factors.

  8. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Squares are always congruent to 0, 1, 4, 5, 9, 16 modulo 20. The values repeat with each increase of a by 10. In this example, N is 17 mod 20, so subtracting 17 mod 20 (or adding 3), produces 3, 4, 7, 8, 12, and 19 modulo 20 for these values. It is apparent that only the 4 from this list can be a square.

  9. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random x values and hoping that the integer x 2 mod N is a perfect square (in the integers):