Search results
Results From The WOW.Com Content Network
Background radiation level is widely used in radiological health fields as a standard for setting exposure limits. [1] Presumably, a dose of radiation which is equivalent to what a person would receive in a few days of ordinary life will not increase their rate of disease measurably.
The flight-time equivalent dose concept is the creation of Ulf Stahmer, a Canadian professional engineer working in the field of radioactive materials transport. It was first presented in the poster session [1] at the 18th International Symposium of the Packaging and Transport of Radioactive Materials (PATRAM) held in Kobe, Hyogo, Japan where the poster received an Aoki Award for distinguished ...
Recognized effects of higher acute radiation doses are described in more detail in the article on radiation poisoning.Although the International System of Units (SI) defines the sievert (Sv) as the unit of radiation dose equivalent, chronic radiation levels and standards are still often given in units of millirems (mrem), where 1 mrem equals 1/1,000 of a rem and 1 rem equals 0.01 Sv.
The roentgen or röntgen (/ ˈ r ɛ n t ɡ ə n,-dʒ ə n, ˈ r ʌ n t-/; [2] symbol R) is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air (statcoulomb per kilogram).
In diagnostic radiology, the F-factor is the conversion factor between exposure to ionizing radiation and the absorbed dose from that radiation. In other words, it converts between the amount of ionization in air (roentgens or, in SI units, coulombs per kilogram of absorber material) and the absorbed dose in air (rads or grays).
The equivalent dose is calculated by multiplying the absorbed energy, averaged by mass over an organ or tissue of interest, by a radiation weighting factor appropriate to the type and energy of radiation. To obtain the equivalent dose for a mix of radiation types and energies, a sum is taken over all types of radiation energy dose. [1]
This unit was found to be equivalent to 88 ergs in air, and made the absorbed dose, as it subsequently became known, dependent on the interaction of the radiation with the irradiated material, not just an expression of radiation exposure or intensity, which the roentgen represented.
For comparison, radiation levels inside the United States Capitol are 85 mrem/yr (0.85 mSv/yr), close to the regulatory limit, because of the uranium content of the granite structure. [14] The NRC sets the annual total effective dose of full body radiation, or total body radiation (TBR), allowed for radiation workers 5,000 mrem (5 rem). [15] [16]