Search results
Results From The WOW.Com Content Network
In linguistics, grammatical number is a feature of nouns, pronouns, adjectives and verb agreement that expresses count distinctions (such as "one", "two" or "three or more"). [1] English and many other languages present number categories of singular or plural .
Multiplication is often defined for natural numbers, then extended to whole numbers, fractions, and irrational numbers. However, abstract algebra has a more general definition of multiplication as a binary operation on some objects that may or may not be numbers. Notably, one can multiply complex numbers, vectors, matrices, and quaternions.
Reed–Kellogg diagram of the sentence. The sentence is unpunctuated and uses three different readings of the word "buffalo". In order of their first use, these are: a. a city named Buffalo. This is used as a noun adjunct in the sentence; n. the noun buffalo, an animal, in the plural (equivalent to "buffaloes" or "buffalos"), in order to avoid ...
One says also that a divides b. If a and b are not integers, mathematicians prefer generally to use integer multiple instead of multiple, for clarification. In fact, multiple is used for other kinds of product; for example, a polynomial p is a multiple of another polynomial q if there exists third polynomial r such that p = qr.
1. Strict inequality between two numbers; means and is read as "less than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2.
A valid number sentence that is true: 83 + 19 = 102. A valid number sentence that is false: 1 + 1 = 3. A valid number sentence using a 'less than' symbol: 3 + 6 < 10. A valid number sentence using a 'more than' symbol: 3 + 9 > 11. An example from a lesson plan: [6] Some students will use a direct computational approach.
For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity".
One example of the double counting method counts the number of ways in which a committee can be formed from people, allowing any number of the people (even zero of them) to be part of the committee. That is, one counts the number of subsets that an -element set may have. One method for forming a committee is to ask each person to choose whether ...