Search results
Results From The WOW.Com Content Network
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
The knapsack problem can be solved by dynamic programming in pseudo-polynomial time: (), where m is the number of inputs and V is the number of different possible values. To get a polynomial-time algorithm, we can solve the knapsack problem approximately, using input rounding.
Knapsack problems appear in real-world decision-making processes in a wide variety of fields, such as finding the least wasteful way to cut raw materials, [3] selection of investments and portfolios, [4] selection of assets for asset-backed securitization, [5] and generating keys for the Merkle–Hellman [6] and other knapsack cryptosystems.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
The problem of fractional knapsack with penalties was introduced by Malaguti, Monaci, Paronuzzi and Pferschy. [44] They developed an FPTAS and a dynamic program for the problem, and they showed an extensive computational study comparing the performance of their models. See also: Fractional job scheduling.
Note: consider In the 2-weighted knapsack problem, where each item has two weights and a value, and the goal is to maximize the value such that the sum of squares of the total weights is at most the knapsack capacity: (,) + (,). We could solve it using a similar DP, where each state is (current weight 1, current weight 2, value).
The separation oracle for the dual LP can be implemented by solving the knapsack problem with sizes s and values y: if the optimal solution of the knapsack problem has a total value at most 1, then y is feasible; if it is larger than 1, than y is not feasible, and the optimal solution of the knapsack problem identifies a configuration for which ...
de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.) [15]