When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Special unitary group - Wikipedia

    en.wikipedia.org/wiki/Special_unitary_group

    Furthermore, every rotation arises from exactly two versors in this fashion. In short: there is a 2:1 surjective homomorphism from SU(2) to SO(3); consequently SO(3) is isomorphic to the quotient group SU(2)/{±I}, the manifold underlying SO(3) is obtained by identifying antipodal points of the 3-sphere S 3, and SU(2) is the universal cover of ...

  3. Representation theory of SU(2) - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of_SU(2)

    The representation with = (i.e., = / in the physics convention) is the 2 representation, the fundamental representation of SU(2). When an element of SU(2) is written as a complex 2 × 2 matrix, it is simply a multiplication of column 2-vectors.

  4. Gell-Mann matrices - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann_matrices

    These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1] These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark ...

  5. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The group SU(2) is the Lie group of unitary 2 × 2 matrices with unit determinant; its Lie algebra is the set of all 2 × 2 anti-Hermitian matrices with trace 0. Direct calculation, as above, shows that the Lie algebra s u 2 {\displaystyle {\mathfrak {su}}_{2}} is the three-dimensional real algebra spanned by the set { iσ k } .

  6. Unitary group - Wikipedia

    en.wikipedia.org/wiki/Unitary_group

    Thus one can define a (unique) unitary group of dimension n for the extension F q 2 /F q, denoted either as U(n, q) or U(n, q 2) depending on the author. The subgroup of the unitary group consisting of matrices of determinant 1 is called the special unitary group and denoted SU(n, q) or SU(n, q 2).

  7. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    The group Spin(3) is isomorphic to the special unitary group SU(2); it is also diffeomorphic to the unit 3-sphere S 3 and can be understood as the group of versors (quaternions with absolute value 1). The connection between quaternions and rotations, commonly exploited in computer graphics, is explained in quaternions and spatial rotations.

  8. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    = ¯ (′) where B μ is the U(1) gauge field; Y W is the weak hypercharge (the generator of the U(1) group); W μ is the three-component SU(2) gauge field; and the components of τ are the Pauli matrices (infinitesimal generators of the SU(2) group) whose eigenvalues give the weak isospin.

  9. Adjoint representation - Wikipedia

    en.wikipedia.org/wiki/Adjoint_representation

    Thus, for example, the adjoint representation of su(2) is the defining representation of so(3). Examples.