Search results
Results From The WOW.Com Content Network
[18] [19] Today, the degree, 1 / 360 of a turn, or the mathematically more convenient radian, 1 / 2 π of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions . [ 23 ]
The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [1]
Marston Morse applied calculus of variations in what is now called Morse theory. [6] Lev Pontryagin, Ralph Rockafellar and F. H. Clarke developed new mathematical tools for the calculus of variations in optimal control theory. [6] The dynamic programming of Richard Bellman is an alternative to the calculus of variations. [7] [8] [9] [c]
Let two radii OA and OB make an arc of θ radians. Since we are considering the limit as θ tends to zero, we may assume θ is a small positive number, say 0 < θ < 1 / 2 π in the first quadrant. In the diagram, let R 1 be the triangle OAB, R 2 the circular sector OAB, and R 3 the triangle OAC. The area of triangle OAB is:
Two angles whose sum is π/2 radians (90 degrees) are complementary. In the diagram, the angles at vertices A and B are complementary, so we can exchange a and b, and change θ to π/2 − θ, obtaining: (/) =
The turn (symbol tr or pla) is a unit of plane angle measurement that is the measure of a complete angle—the angle subtended by a complete circle at its center. One turn is equal to 2π radians, 360 degrees or 400 gradians.
The constant appeared in publications as early as 1880s. [2] Norair Arakelian used lowercase ayb (ա) from the Armenian alphabet. [2] The constant name was coined by Samuel R. Kaplan in 2007. It originates from a professor of French named Dottie who observed the number by repeatedly pressing the cosine button on her calculator. [3] [nb 1]
A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.