Search results
Results From The WOW.Com Content Network
Fluid dynamicists define the chord Reynolds number R = Vc/ν, where V is the flight speed, c is the chord length, and ν is the kinematic viscosity of the fluid in which the airfoil operates, which is 1.460 × 10 −5 m 2 /s for the atmosphere at sea level. [19]
Blade solidity affects various turbomachinery parameters, so to vary those parameters, one needs to vary blade solidity. However, there are some limitations imposed by aspect ratio (span/chord) and pitch. If an impeller has only a few blades (i.e a large pitch), it will result in less lift force and in a similar manner for more blades (i.e ...
The Blasius correlation is the simplest equation for computing the Darcy friction factor. Because the Blasius correlation has no term for pipe roughness, it is valid only to smooth pipes. However, the Blasius correlation is sometimes used in rough pipes because of its simplicity. The Blasius correlation is valid up to the Reynolds number 100000.
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.
If the pipes are the same size and shape, the pipe full of sand has higher resistance to flow. Resistance, however, is not solely determined by the presence or absence of sand. It also depends on the length and width of the pipe: short or wide pipes have lower resistance than narrow or long pipes.
where L is the length of the string (for a string fixed at both ends) and n = 1, 2, 3...(Harmonic in an open end pipe (that is, both ends of the pipe are open)). The speed of a wave through a string or wire is related to its tension T and the mass per unit length ρ:
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
A pipe filled with hair restricts the flow of water more than a clean pipe of the same shape and size. Similarly, electrons can flow freely and easily through a copper wire, but cannot flow as easily through a steel wire of the same shape and size, and they essentially cannot flow at all through an insulator like rubber, regardless of its shape.