Search results
Results From The WOW.Com Content Network
Binary hydrogen compounds in group 1 are the ionic hydrides (also called saline hydrides) wherein hydrogen is bound electrostatically. Because hydrogen is located somewhat centrally in an electronegative sense, it is necessary for the counterion to be exceptionally electropositive for the hydride to possibly be accurately described as truly behaving ionic.
This often causes ionic compounds to be very stable. Ionic bonds have high bond energy. Bond energy is the mean amount of energy required to break the bond in the gaseous state. Most ionic compounds exist in the form of a crystal structure, in which the ions occupy the corners of the crystal.
Sodium chloride is a famous binary phase. It features two elements: Na and Cl. In materials chemistry, a binary phase or binary compound is a chemical compound containing two different elements. Some binary phase compounds are molecular, e.g. carbon tetrachloride (CCl 4). More typically binary phase refers to extended solids.
Hydrogen compounds are compounds containing the element hydrogen. In these compounds, hydrogen can form in the +1 and -1 oxidation states. Hydrogen can form compounds both ionically and in covalent substances. It is a part of many organic compounds such as hydrocarbons as well as water and other organic substances.
In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions and negatively charged ions , [1] which results in a compound with no net electric charge (electrically neutral). The constituent ions are held together by electrostatic forces termed ionic bonds.
In modern usage, this is typically only used for ionic bonds, but it is sometimes (and more frequently in the past) been applied to all compounds containing covalently bound H atoms. In this broad and potentially archaic sense, water (H 2 O) is a hydride of oxygen , ammonia is a hydride of nitrogen , etc.
Binary acids or hydracids are certain molecular compounds in which hydrogen is bonded with one other nonmetallic element. [1] This distinguishes them from other types of acids with more than two constituent elements. The "binary" nature of binary acids is not determined by the number of atoms in a molecule, but rather how many elements it contains.
The bonding in copper sulfides cannot be correctly described in terms of a simple oxidation state formalism because the Cu-S bonds are somewhat covalent rather than ionic in character, and have a high degree of delocalization resulting in complicated electronic band structures.