Search results
Results From The WOW.Com Content Network
However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2, written as [Ar] 3d 4 4s 2, but whose actual configuration given in the table below is [Ar] 3d 5 4s 1.
These tables list values of molar ionization energies, measured in kJ⋅mol −1. This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms.
For each atom, the column marked 1 is the first ionization energy to ionize the neutral atom, the column marked 2 is the second ionization energy to remove a second electron from the +1 ion, the column marked 3 is the third ionization energy to remove a third electron from the +2 ion, and so on.
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
As is observed for most elements, a diatomic scandium hydride has been observed spectroscopically at high temperatures in the gas phase. [6] Scandium borides and carbides are non-stoichiometric, as is typical for neighboring elements. [7] Lower oxidation states (+2, +1, 0) have also been observed in organoscandium compounds. [8] [9] [10] [11]
The molecular orbitals are labelled according to their symmetry, [e] rather than the atomic orbital labels used for atoms and monatomic ions; hence, the electron configuration of the dioxygen molecule, O 2, is written 1σ g 2 1σ u 2 2σ g 2 2σ u 2 3σ g 2 1π u 4 1π g 2, [39] [40] or equivalently 1σ g 2 1σ u 2 2σ g 2 2σ u 2 1π u 4 3σ g ...
As is observed for most elements, a diatomic scandium hydride has been observed spectroscopically at high temperatures in the gas phase. [5] Scandium borides and carbides are non-stoichiometric, as is typical for neighboring elements. [41] Lower oxidation states (+2, +1, 0) have also been observed in organoscandium compounds. [42] [4] [43] [44]
1.80 [16] 1.26: battery, Fluoride-ion [citation needed] 1.7: 2.8: battery, Hydrogen closed cycle H fuel cell [17] 1.62: Hydrazine decomposition (as monopropellant) 1.6: 1.6: Ammonium nitrate decomposition (as monopropellant) 1.4: 2.5: Thermal Energy Capacity of Molten Salt: 1 [citation needed] 98% [18] Molecular spring approximate [citation ...