When.com Web Search

  1. Ad

    related to: hoop stress calculator thin wall pipe

Search results

  1. Results From The WOW.Com Content Network
  2. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:

  3. Specified minimum yield strength - Wikipedia

    en.wikipedia.org/wiki/Specified_Minimum_Yield...

    It is an indication of the minimum stress a pipe may experience that will cause plastic (permanent) deformation. The SMYS is required to determine the maximum allowable operating pressure (MAOP) of a pipeline, as determined by Barlow's Formula which is P = (2 * S * T)/(OD * SF), where P is pressure, OD is the pipe’s outside diameter, S is the ...

  4. Barlow's formula - Wikipedia

    en.wikipedia.org/wiki/Barlow's_formula

    Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material.. This approximate formula is named after Peter Barlow, an English mathematician.

  5. Radial stress - Wikipedia

    en.wikipedia.org/wiki/Radial_stress

    For cylindrical pressure vessels, the normal loads on a wall element are longitudinal stress, circumferential (hoop) stress and radial stress. The radial stress for a thick-walled cylinder is equal and opposite to the gauge pressure on the inside surface, and zero on the outside surface. The circumferential stress and longitudinal stresses are ...

  6. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    is the cylinder stress or "hoop stress". For the thin-walled assumption to be valid the vessel must have a wall thickness of no more than about one-tenth (often cited as one twentieth) of its radius. The cylinder stress , in turn, is the average force exerted circumferentially (perpendicular both to the axis and to the radius of the object) in ...

  7. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    For a fully filled duct or pipe whose cross-section is a convex regular polygon, the hydraulic diameter is equivalent to the diameter of a circle inscribed within the wetted perimeter. This can be seen as follows: The N {\displaystyle N} -sided regular polygon is a union of N {\displaystyle N} triangles, each of height D / 2 {\displaystyle D/2 ...

  8. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by

  9. ROHR2 - Wikipedia

    en.wikipedia.org/wiki/ROHR2

    ROHR2 is a CAE system for pipe stress analysis from SIGMA Ingenieurgesellschaft mbH, based in Unna, Germany.The software performs both static and dynamic analysis of complex piping and skeletal structures, and runs on Microsoft Windows platform.