When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom...

    Degrees of freedom are important to the understanding of model fit if for no other reason than that, all else being equal, the fewer degrees of freedom, the better indices such as χ 2 will be. It has been shown that degrees of freedom can be used by readers of papers that contain SEMs to determine if the authors of those papers are in fact ...

  3. Molecular dynamics - Wikipedia

    en.wikipedia.org/wiki/Molecular_dynamics

    The simplest form of coarse-graining is the united atom (sometimes called extended atom) and was used in most early MD simulations of proteins, lipids, and nucleic acids. For example, instead of treating all four atoms of a CH 3 methyl group explicitly (or all three atoms of CH 2 methylene group), one represents the whole group with one pseudo ...

  4. Degree of freedom (statistics) - Wikipedia

    en.wikipedia.org/?title=Degree_of_freedom...

    Download as PDF; Printable version; From Wikipedia, the free encyclopedia ... Degrees of freedom (statistics) Retrieved from " ...

  5. Degrees of freedom (physics and chemistry) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(physics...

    By the equipartition theorem, internal energy per mole of gas equals c v T, where T is absolute temperature and the specific heat at constant volume is c v = (f)(R/2). R = 8.314 J/(K mol) is the universal gas constant, and "f" is the number of thermodynamic (quadratic) degrees of freedom, counting the number of ways in which energy can occur.

  6. Degrees of freedom - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom

    In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation : its two coordinates ; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation .

  7. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    If is a -dimensional Gaussian random vector with mean vector and rank covariance matrix , then = () is chi-squared distributed with degrees of freedom. The sum of squares of statistically independent unit-variance Gaussian variables which do not have mean zero yields a generalization of the chi-squared distribution called the noncentral chi ...

  8. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The degree of freedom, =, equals the number of observations n minus the number of fitted parameters m. In weighted least squares , the definition is often written in matrix notation as χ ν 2 = r T W r ν , {\displaystyle \chi _{\nu }^{2}={\frac {r^{\mathrm {T} }Wr}{\nu }},} where r is the vector of residuals, and W is the weight matrix, the ...

  9. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    The degrees of freedom are not based on the number of observations as with a Student's t or F-distribution. For example, if testing for a fair, six-sided die, there would be five degrees of freedom because there are six categories or parameters (each number); the number of times the die is rolled does not influence the number of degrees of freedom.