Search results
Results From The WOW.Com Content Network
Over time, researchers have consistently encountered superconductivity at temperatures previously considered unexpected or impossible, challenging the notion that achieving superconductivity at room temperature was infeasible. [4] [5] The concept of "near-room temperature" transient effects has been a subject of discussion since the early 1950s.
However, currently known high-temperature superconductors are brittle ceramics that are expensive to manufacture and not easily formed into wires or other useful shapes. [4] Therefore, the applications for HTS have been where it has some other intrinsic advantage, e.g. in: low thermal loss current leads for LTS devices (low thermal conductivity),
The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
If a new superconductor works out, its 100% efficiency will make the worldwide grid even more of a no-brainer. Paul deLespinasse: Room temperature superconductors, the worldwide grid, solar energy ...
At sufficiently low temperatures, electrons near the Fermi surface become unstable against the formation of Cooper pairs. Cooper showed such binding will occur in the presence of an attractive potential, no matter how weak. In conventional superconductors, an attraction is generally attributed to an electron-lattice interaction.
Breakthrough would mark ‘holy grails of modern physics, unlocking major new developments in energy, transportation, healthcare, and communications’ – but it is a long way from being proven
In 1986, J. Georg Bednorz and K. Alex Mueller discovered superconductivity in a lanthanum-based cuprate perovskite material, which had a transition temperature of 35 K (Nobel Prize in Physics, 1987) and was the first of the high-temperature superconductors.
Low-temperature superconductor (LTS) wires are made from superconductors with low critical temperature, such as Nb 3 Sn (niobium–tin) and NbTi (niobium–titanium). Often the superconductor is in filament form in a copper or aluminium matrix which carries the current should the superconductor quench for any reason.