When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of dynamical systems and differential equations topics

    en.wikipedia.org/wiki/List_of_dynamical_systems...

    Kinematics; Equation of motion; Dynamics (mechanics) Classical mechanics; Isolated physical system. Lagrangian mechanics; Hamiltonian mechanics; Routhian mechanics; Hamilton-Jacobi theory; Appell's equation of motion; Udwadia–Kalaba equation; Celestial mechanics; Orbit; Lagrange point. Kolmogorov-Arnold-Moser theorem; N-body problem, many ...

  3. Transport theorem - Wikipedia

    en.wikipedia.org/wiki/Transport_theorem

    The transport theorem (or transport equation, rate of change transport theorem or basic kinematic equation or Bour's formula, named after: Edmond Bour) is a vector equation that relates the time derivative of a Euclidean vector as evaluated in a non-rotating coordinate system to its time derivative in a rotating reference frame.

  4. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    In engineering, for instance, kinematic analysis may be used to find the range of movement for a given mechanism and, working in reverse, using kinematic synthesis to design a mechanism for a desired range of motion. [8] In addition, kinematics applies algebraic geometry to the study of the mechanical advantage of a mechanical system or mechanism.

  5. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    The kinematics equations for a parallel chain, or parallel robot, formed by an end-effector supported by multiple serial chains are obtained from the kinematics equations of each of the supporting serial chains. Suppose that m serial chains support the end-effector, then the transformation from the base to the end-effector is defined by m ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these. This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).

  8. Lists of physics equations - Wikipedia

    en.wikipedia.org/wiki/Lists_of_physics_equations

    In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.

  9. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    Note that F is stable under the rotation q → p −1 qp and under the translation (1 + εr)(1 + εs) = 1 + ε(r + s) for any vector quaternions r and s. F is a 3-flat in the eight-dimensional space of dual quaternions. This 3-flat F represents space, and the homography constructed, restricted to F, is a screw displacement of space.