When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ballistic pendulum - Wikipedia

    en.wikipedia.org/wiki/Ballistic_pendulum

    A ballistic pendulum is a device for measuring a bullet's momentum, from which it is possible to calculate the velocity and kinetic energy. Ballistic pendulums have been largely rendered obsolete by modern chronographs, which allow direct measurement of the projectile velocity.

  3. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.

  4. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The speed, and thus the kinetic energy of a single object is frame-dependent (relative): it can take any non-negative value, by choosing a suitable inertial frame of reference. For example, a bullet passing an observer has kinetic energy in the reference frame of this observer.

  5. Muzzle energy - Wikipedia

    en.wikipedia.org/wiki/Muzzle_energy

    The general formula for the kinetic energy is =, where v is the velocity of the bullet and m is the mass of the bullet. Although both mass and velocity contribute to the muzzle energy, the muzzle energy is proportional to the mass while proportional to the square of the velocity. The velocity of the bullet is a more important determinant of ...

  6. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is

  7. Physics of firearms - Wikipedia

    en.wikipedia.org/wiki/Physics_of_firearms

    However, the smaller mass of the bullet, compared to that of the gun-shooter system, allows significantly more kinetic energy to be imparted to the bullet than to the shooter. The kinetic energy for the two systems are 1 2 M V 2 {\displaystyle {\begin{matrix}{\frac {1}{2}}\end{matrix}}MV^{2}} for the gun-shooter system and 1 2 m v 2 ...

  8. Muzzle velocity - Wikipedia

    en.wikipedia.org/wiki/Muzzle_velocity

    Firearm muzzle velocities range from approximately 120 m/s (390 ft/s) to 370 m/s (1,200 ft/s) in black powder muskets, [3] to more than 1,200 m/s (3,900 ft/s) [4] in modern rifles with high-velocity cartridges such as the .220 Swift and .204 Ruger, all the way to 1,700 m/s (5,600 ft/s) [5] for tank guns firing kinetic energy penetrator ammunition.

  9. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    Kinetic energy is the energy of motion. The amount of translational kinetic energy found in two variables: the mass of the object and the speed of the object as shown in the equation above. Kinetic energy must always be either zero or a positive value.