Search results
Results From The WOW.Com Content Network
A large body of research has shown that AM fungi can, and do, transfer nitrogen to plants and transfer nitrogen between plants, including crop plants. However, it has not been shown conclusively that there is a growth benefit from AM due to nitrogen. Some researchers doubt that AM contribute significantly to plant N status in nature. [12]
Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite .
Nitrogen-fixing bacteria are capable of metabolising N 2 into the form of ammonia or related nitrogenous compounds in a process called nitrogen fixation. Both ammonium and nitrate can be immobilized by their incorporation into microbial living cells, where it is temporarily sequestered in the form of amino acids and proteins.
Nitrogen is a fundamental chemical component of amino acids, the molecular building blocks of protein. As such, nitrogen balance may be used as an index of protein metabolism. [1] When more nitrogen is gained than lost by an individual, they are considered to have a positive nitrogen balance and be in a state of overall protein anabolism.
Rhizobium is a genus of Gram-negative soil bacteria that fix nitrogen. Rhizobium species form an endosymbiotic nitrogen-fixing association with roots of (primarily) legumes and other flowering plants. The bacteria colonize plant cells to form root nodules, where they convert atmospheric nitrogen into ammonia using the enzyme nitrogenase.
This is followed by continuous cell proliferation, resulting in the formation of the root nodule. [17] A second mechanism, used especially by rhizobia that infect aquatic hosts, is called crack entry. In this case, no root hair deformation is observed. Instead, the bacteria penetrate between cells through cracks produced by lateral root ...
Nitrogen assimilation is the formation of organic nitrogen compounds like amino acids from inorganic nitrogen compounds present in the environment. Organisms like plants, fungi and certain bacteria that can fix nitrogen gas (N 2) depend on the ability to assimilate nitrate or ammonia for their needs. Other organisms, like animals, depend ...
In plants with bacterial symbionts, which fix atmospheric nitrogen, the energetic cost to the plant to acquire one molecule of NH 3 from atmospheric N 2 is 2.36 CO 2. [13] It is essential that plants uptake nitrogen from the soil or rely on symbionts to fix it from the atmosphere to assure growth, reproduction and long-term survival.