Search results
Results From The WOW.Com Content Network
Animated example of a breadth-first search. Black: explored, grey: queued to be explored later on BFS on Maze-solving algorithm Top part of Tic-tac-toe game tree. Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
Dually, breadth-first traversal can very naturally be implemented via corecursion. Iteratively, one may traverse a tree by placing its root node in a data structure, then iterating with that data structure while it is non-empty, on each step removing the first node from it and placing the removed node's child nodes back
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms.
Heapsort maps the binary tree to the array using a top-down breadth-first traversal of the tree; the array begins with the root of the tree, then its two children, then four grandchildren, and so on. Every element has a well-defined depth below the root of the tree, and every element except the root has its parent earlier in the array.
Both the depth-first and breadth-first graph searches are adaptations of tree-based algorithms, distinguished primarily by the lack of a structurally determined "root" vertex and the addition of a data structure to record the traversal's visitation state.
The d-ary heap consists of an array of n items, each of which has a priority associated with it. These items may be viewed as the nodes in a complete d-ary tree, listed in breadth first traversal order: the item at position 0 of the array (using zero-based numbering) forms the root of the tree, the items at positions 1 through d are its children, the next d 2 items are its grandchildren, etc.
Search trees store data in a way that makes an efficient search algorithm possible via tree traversal. A binary search tree is a type of binary tree; Representing sorted lists of data; Computer-generated imagery: Space partitioning, including binary space partitioning; Digital compositing; Storing Barnes–Hut trees used to simulate galaxies ...