Search results
Results From The WOW.Com Content Network
General process of fluorescent in situ hybridization (FISH) used for bacterial pathogen identification. First, an infected tissue sample is taken from the patient. Then an oligonucleotide complementary to the suspected pathogen's genetic code is chemically tagged with a fluorescent probe.
Flow-FISH was first published in 1998 by Rufer et al. [11] as a modification of another technique for analyzing telomere length, Q-FISH, that employs peptide nucleic acid probes [12] of a 3'-CCCTAACCCTAACCCTAA-5' sequence labeled with a fluorescin fluorophore to stain telomeric repeats on prepared metaphase spreads of cells that have been treated with colcemid, hypotonic shock, and fixation to ...
In molecular biology, a hybridization probe (HP) is a fragment of DNA or RNA, usually 15–10000 nucleotides long, which can be radioactively or fluorescently labeled. HPs can be used to detect the presence of nucleotide sequences in analyzed RNA or DNA that are complementary to the sequence in the probe. [ 1 ]
Then, the probe that was labeled with either radio-, fluorescent- or antigen-labeled bases (e.g., digoxigenin) is localized and quantified in the tissue using either autoradiography, fluorescence microscopy, or immunohistochemistry, respectively. ISH can also use two or more probes, labeled with radioactivity or the other non-radioactive labels ...
Fluorescence in situ hybridization (FISH)is the most widely used riboprobe technique. A target sequence and a probe are essential in FISH. First, the probe is labeled with either direct or indirect labeling strategy: hapten-modified nucleotides are used in indirect labeling, and fluorophore-modified nucleotides are used in direct labeling.
Quantitative Fluorescent in situ hybridization (Q-FISH) is a cytogenetic technique based on the traditional FISH methodology. In Q-FISH, the technique uses labelled (Cy3 or FITC) synthetic DNA mimics called peptide nucleic acid (PNA) oligonucleotides to quantify target sequences in chromosomal DNA using fluorescent microscopy and analysis software.
Probe design for CISH is very similar to that for FISH with differences only in labelling and detection. FISH probes are generally labelled with a variety of different fluorescent tags and can only be detected under a fluorescence microscope, [4] whereas CISH probes are labelled with biotin or digoxigenin [5] and can be detected using a bright-field microscope after other treatment steps have ...
The fluorescent tags are then cleaved and washed away, and the next cycle is initiated. Each rolony – corresponding to a single “parent” DNA or RNA molecule in the tissue – thus appears across a series of fluorescent images, as a localized “spot” with a sequence of colors corresponding to the nucleotide sequence of the parent molecule.