Search results
Results From The WOW.Com Content Network
The logrank test is based on the same assumptions as the Kaplan-Meier survival curve—namely, that censoring is unrelated to prognosis, the survival probabilities are the same for subjects recruited early and late in the study, and the events happened at the times specified. Deviations from these assumptions matter most if they are satisfied ...
These three tests are asymptotically equivalent. For large enough N, they will give similar results. For small N, they may differ somewhat. The last row, "Score (logrank) test" is the result for the log-rank test, with p=0.011, the same result as the log-rank test, because the log-rank test is a special case of a Cox PH regression.
In some cases, one may wish to compare different Kaplan–Meier curves. This can be done by the log rank test, and the Cox proportional hazards test. Other statistics that may be of use with this estimator are pointwise confidence intervals, [13] the Hall-Wellner band [14] and the equal-precision band. [15]
Kaplan–Meier estimator [ edit ] The Dvoretzky–Kiefer–Wolfowitz inequality is obtained for the Kaplan–Meier estimator which is a right-censored data analog of the empirical distribution function
The survival function is also known as the survivor function [2] or reliability function. [3] The term reliability function is common in engineering while the term survival function is used in a broader range of applications, including human mortality. The survival function is the complementary cumulative distribution function of the lifetime ...
In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design. It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population ...
The most common approach is to use Markov chain Monte Carlo methods to generate samples from the posterior, which can then be used to approximate the expected utility. Another approach is to use a variational Bayes approximation of the posterior, which can often be calculated in closed form.
In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests.Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞.