Search results
Results From The WOW.Com Content Network
Liquid hydrogen also has a much higher specific energy than gasoline, natural gas, or diesel. [12] The density of liquid hydrogen is only 70.85 kg/m 3 (at 20 K), a relative density of just 0.07. Although the specific energy is more than twice that of other fuels, this gives it a remarkably low volumetric energy density, many fold lower.
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
Liquid nitrogen. Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders.
The effects of soil liquefaction, seen after 2011 Canterbury earthquake. In geology, soil liquefaction refers to the process by which water-saturated, unconsolidated sediments are transformed into a substance that acts like a liquid, often in an earthquake. [6]
Gaseous hydrogen is molecular hydrogen and does not cause embrittlement, though it can cause a hot hydrogen attack (see below). It is the atomic hydrogen from a chemical attack which causes embrittlement because the atomic hydrogen dissolves quickly into the metal at room temperature. [6] Gaseous hydrogen is found in pressure vessels and pipelines.
Liquid hydrogen tanks for cars, producing for example the BMW Hydrogen 7. Japan has a liquid hydrogen (LH2) storage site in Kobe port. [4] Hydrogen is liquefied by reducing its temperature to −253 °C, similar to liquefied natural gas (LNG) which is stored at −162 °C. A potential efficiency loss of only 12.79% can be achieved, or 4.26 kW ...
The autoignition temperature or self-ignition temperature, often called spontaneous ignition temperature or minimum ignition temperature (or shortly ignition temperature) and formerly also known as kindling point, of a substance is the lowest temperature at which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. [1]
For example, the addition of hydrogen to ethene has a Gibbs free energy change of -101 kJ·mol −1, which is highly exothermic. [11] In the hydrogenation of vegetable oils and fatty acids, for example, the heat released, about 25 kcal per mole (105 kJ/mol), is sufficient to raise the temperature of the oil by 1.6–1.7 °C per iodine number drop.