When.com Web Search

  1. Ad

    related to: binomial distribution function calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    The binomial distribution converges towards the Poisson distribution as the number of trials goes to infinity while the product np converges to a finite limit. Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B(n, p) of the binomial distribution if n is sufficiently large and p is

  3. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  4. Negative binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_binomial_distribution

    Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...

  5. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    The natural exponential family of a distribution may be realized by shifting or translating K(t), and adjusting it vertically so that it always passes through the origin: if f is the pdf with cumulant generating function () = ⁡ (), and | is its natural exponential family, then () = (), and () = (+) ().

  6. Beta-binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Beta-binomial_distribution

    The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics , empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.

  7. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    The Shepp–Olkin concavity conjecture, due to Lawrence Shepp and Ingram Olkin in 1981, states that the entropy of a Poisson binomial distribution is a concave function of the success probabilities ,, …,. [8]

  8. Binomial regression - Wikipedia

    en.wikipedia.org/wiki/Binomial_regression

    This can now be considered a binomial distribution with = trial, so a binary regression is a special case of a binomial regression. If these data are grouped (by adding counts), they are no longer binary data, but are count data for each group, and can still be modeled by a binomial regression; the individual binary outcomes are then referred ...

  9. De Moivre–Laplace theorem - Wikipedia

    en.wikipedia.org/wiki/De_Moivre–Laplace_theorem

    In particular, the theorem shows that the probability mass function of the random number of "successes" observed in a series of independent Bernoulli trials, each having probability of success (a binomial distribution with trials), converges to the probability density function of the normal distribution with expectation and standard deviation ...