Ad
related to: concept of general relativity definition
Search results
Results From The WOW.Com Content Network
General relativity has emerged as a highly successful model of gravitation and cosmology, which has so far passed many unambiguous observational and experimental tests. However, there are strong indications that the theory is incomplete. [210] The problem of quantum gravity and the question of the reality of spacetime singularities remain open ...
General relativity is a theory of gravitation developed by Albert Einstein between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime.
General relativity is a theory of gravitation developed by Einstein in the years 1907–1915. The development of general relativity began with the equivalence principle , under which the states of accelerated motion and being at rest in a gravitational field (for example, when standing on the surface of the Earth) are physically identical.
The concept of 'atom' proposed by Democritus was an early philosophical attempt to unify phenomena observed in nature. The concept of 'atom' also appeared in the Nyaya-Vaisheshika school of ancient Indian philosophy. Archimedes was possibly the first philosopher to have described nature with axioms (or principles) and then deduce new results ...
A Relativity Tutorial at Caltech – A basic introduction to concepts of Special and General Relativity, as well as astrophysics. Relativity Gravity and Cosmology – A short course offered at MIT. Relativity in film clips and animations from the University of New South Wales.
The concept of mass in general relativity (GR) is more subtle to define than the concept of mass in special relativity. In fact, general relativity does not offer a single definition of the term mass, but offers several different definitions that are applicable under different circumstances. Under some circumstances, the mass of a system in ...
Numerical relativity is the sub-field of general relativity which seeks to solve Einstein's equations through the use of numerical methods. Finite difference , finite element and pseudo-spectral methods are used to approximate the solution to the partial differential equations which arise.
The extended form by Albert Einstein requires special relativity to also hold in free fall and requires the weak equivalence to be valid everywhere. This form was a critical input for the development of the theory of general relativity. The strong form requires Einstein's form to work for stellar objects.