Search results
Results From The WOW.Com Content Network
Norm-referenced assessment can be contrasted with criterion-referenced assessment and ipsative assessment. In a criterion-referenced assessment, the score shows whether or not test takers performed well or poorly on a given task, not how that compares to other test takers; in an ipsative system, test takers are compared to previous performance.
Test scores are interpreted with a norm-referenced or criterion-referenced interpretation, or occasionally both. A norm-referenced interpretation means that the score conveys meaning about the examinee with regards to their standing among other examinees. A criterion-referenced interpretation means that the score conveys information about the ...
Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...
The second meaning of normal score is associated with data values derived from the ranks of the observations within the dataset. A given data point is assigned a value which is either exactly, or an approximation, to the expectation of the order statistic of the same rank in a sample of standard normal random variables of the same size as the ...
In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...
In educational statistics, a normal curve equivalent (NCE), developed for the United States Department of Education by the RMC Research Corporation, [1] is a way of normalizing scores received on a test into a 0-100 scale similar to a percentile rank, but preserving the valuable equal-interval properties of a z-score.
[2] Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests. For the test theory, the percentile rank of a raw score is interpreted as the percentage of examinees in the norm group who scored below the score of interest. [3] [4]
The following is a Python implementation of BatchNorm for 2D convolutions: import numpy as np def batchnorm_cnn ( x , gamma , beta , epsilon = 1e-9 ): # Calculate the mean and variance for each channel. mean = np . mean ( x , axis = ( 0 , 1 , 2 ), keepdims = True ) var = np . var ( x , axis = ( 0 , 1 , 2 ), keepdims = True ) # Normalize the ...