When.com Web Search

  1. Ad

    related to: isosceles obtuse angled triangle meaning in english version full movie

Search results

  1. Results From The WOW.Com Content Network
  2. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.

  3. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    If angle C is obtuse then for sides a, b, and c we have [4]: p.1, #74 < + <, with the left inequality approaching equality in the limit only as the apex angle of an isosceles triangle approaches 180°, and with the right inequality approaching equality only as the obtuse angle approaches 90°.

  4. Disphenoid - Wikipedia

    en.wikipedia.org/wiki/Disphenoid

    Two edges have dihedral angles of 90°, and four edges have dihedral angles of 60°. Some tetragonal disphenoids will form honeycombs. The disphenoid whose four vertices are (-1, 0, 0), (1, 0, 0), (0, 1, 1), and (0, 1, -1) is such a disphenoid. [13] [14] Each of its four faces is an isosceles triangle with edges of lengths √ 3, √ 3, and 2.

  5. Shape - Wikipedia

    en.wikipedia.org/wiki/Shape

    All similar triangles have the same shape. These shapes can be classified using complex numbers u, v, w for the vertices, in a method advanced by J.A. Lester [5] and Rafael Artzy. For example, an equilateral triangle can be expressed by the complex numbers 0, 1, (1 + i√3)/2 representing its vertices.

  6. Steiner–Lehmus theorem - Wikipedia

    en.wikipedia.org/wiki/Steiner–Lehmus_theorem

    Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof. Sturm passed the request on to other mathematicians and Steiner was among the first to provide a solution.

  7. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  8. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  9. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.