Ad
related to: calculate the wavelength of wave
Search results
Results From The WOW.Com Content Network
Relationship between wavelength, angular wavelength, and other wave properties. A quantity related to the wavelength is the angular wavelength (also known as reduced wavelength), usually symbolized by ƛ ("lambda-bar" or barred lambda). It is equal to the ordinary wavelength reduced by a factor of 2π (ƛ = λ/2π), with SI units of meter per ...
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
where ν is the frequency of the wave, λ is the wavelength, ω = 2πν is the angular frequency of the wave, and v p is the phase velocity of the wave. The dependence of the wavenumber on the frequency (or more commonly the frequency on the wavenumber) is known as a dispersion relation.
In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation .
Wavelengths of electromagnetic radiation, whatever medium they are traveling through, are usually quoted in terms of the vacuum wavelength, although this is not always explicitly stated. Generally, electromagnetic radiation is classified by wavelength into radio wave, microwave, infrared, visible light, ultraviolet, X-rays and gamma rays. The ...
In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre.It has a magnitude and direction.Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), and its direction is perpendicular to the wavefront.
A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency.