Search results
Results From The WOW.Com Content Network
Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.
The semi-Fibonacci sequence (sequence A030067 in the OEIS) is defined via the same recursion for odd-indexed terms (+) = + and () =, but for even indices () = (), . The bisection A030068 of odd-indexed terms s ( n ) = a ( 2 n − 1 ) {\displaystyle s(n)=a(2n-1)} therefore verifies s ( n + 1 ) = s ( n ) + a ( n ) {\displaystyle s(n+1)=s(n)+a(n ...
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
The k-Wall–Sun–Sun primes can be explicitly defined as primes p such that p 2 divides the k-Fibonacci number (()), where F k (n) = U n (k, −1) is a Lucas sequence of the first kind with discriminant D = k 2 + 4 and () is the Pisano period of k-Fibonacci numbers modulo p. [15]
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n.
Every sequence of positive integers satisfying the Fibonacci recurrence occurs, shifted by at most finitely many positions, in the Wythoff array. In particular, the Fibonacci sequence itself is the first row, and the sequence of Lucas numbers appears in shifted form in the second row ( Morrison 1980 ).
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...
That is to say, the Fibonacci sequence is a divisibility sequence. F p is prime for 8 of the first 10 primes p; the exceptions are F 2 = 1 and F 19 = 4181 = 37 × 113. However, Fibonacci primes appear to become rarer as the index increases. F p is prime for only 26 of the 1229 primes p smaller than 10,000. [3]