When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A drawing of a graph with 6 vertices and 7 edges.. In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.

  3. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  4. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  5. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. [1] A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.

  6. Erdős–Gallai theorem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Gallai_theorem

    The Erdős–Gallai theorem is a result in graph theory, a branch of combinatorial mathematics.It provides one of two known approaches to solving the graph realization problem, i.e. it gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph.

  7. Perfect graph - Wikipedia

    en.wikipedia.org/wiki/Perfect_graph

    The graph of the 3-3 duoprism (the line graph of ,) is perfect.Here it is colored with three colors, with one of its 3-vertex maximum cliques highlighted. In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph.

  8. Chordal graph - Wikipedia

    en.wikipedia.org/wiki/Chordal_graph

    A perfect elimination ordering in a graph is an ordering of the vertices of the graph such that, for each vertex v, v and the neighbors of v that occur after v in the order form a clique.

  9. Queue number - Wikipedia

    en.wikipedia.org/wiki/Queue_number

    Every tree has queue number 1, with a vertex ordering given by a breadth-first traversal. [3] Pseudoforests and grid graphs also have queue number 1. [4] Outerplanar graphs have queue number at most 2; the 3-sun graph (a triangle with each of its edges replaced by a triangle) is an example of an outerplanar graph whose queue number is exactly 2. [5]