Search results
Results From The WOW.Com Content Network
A drawing of a graph with 6 vertices and 7 edges.. In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. [1] A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.
The Erdős–Gallai theorem is a result in graph theory, a branch of combinatorial mathematics.It provides one of two known approaches to solving the graph realization problem, i.e. it gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph.
The graph of the 3-3 duoprism (the line graph of ,) is perfect.Here it is colored with three colors, with one of its 3-vertex maximum cliques highlighted. In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph.
A perfect elimination ordering in a graph is an ordering of the vertices of the graph such that, for each vertex v, v and the neighbors of v that occur after v in the order form a clique.
Every tree has queue number 1, with a vertex ordering given by a breadth-first traversal. [3] Pseudoforests and grid graphs also have queue number 1. [4] Outerplanar graphs have queue number at most 2; the 3-sun graph (a triangle with each of its edges replaced by a triangle) is an example of an outerplanar graph whose queue number is exactly 2. [5]