When.com Web Search

  1. Ad

    related to: problems based on greedy algorithm pdf book

Search results

  1. Results From The WOW.Com Content Network
  2. Greedy number partitioning - Wikipedia

    en.wikipedia.org/wiki/Greedy_number_partitioning

    In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...

  3. Set cover problem - Wikipedia

    en.wikipedia.org/wiki/Set_cover_problem

    This greedy algorithm actually achieves an approximation ratio of (′) where ′ is the maximum cardinality set of . For δ − {\displaystyle \delta -} dense instances, however, there exists a c ln ⁡ m {\displaystyle c\ln {m}} -approximation algorithm for every c > 0 {\displaystyle c>0} .

  4. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...

  5. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.

  6. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.

  7. Weighted matroid - Wikipedia

    en.wikipedia.org/wiki/Weighted_matroid

    A basic problem regarding weighted matroids is to find an independent set with a maximum total weight. This problem can be solved using the following simple greedy algorithm: Initialize the set A to an empty set. Note that, by definition of a matroid, A is an independent set. For each element x in E\A, check whether Au{x} is still an ...

  8. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms and algorithm engineering, the knapsack problem was the 19th most popular and the third most needed after suffix trees and the bin packing problem.

  9. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    Algorithms developed for multiway number partitioning include: The pseudopolynomial time number partitioning takes () memory, where m is the largest number in the input. The Complete Greedy Algorithm (CGA) considers all partitions by constructing a binary tree. Each level in the tree corresponds to an input number, where the root corresponds to ...