When.com Web Search

  1. Ads

    related to: proof by contradiction steps in math problems 6th graders 1 2 5

Search results

  1. Results From The WOW.Com Content Network
  2. Vieta jumping - Wikipedia

    en.wikipedia.org/wiki/Vieta_jumping

    This method can be applied to problem #6 at IMO 1988: Let a and b be positive integers such that ab + 1 divides a 2 + b 2. Prove that ⁠ a 2 + b 2 / ab + 1 ⁠ is a perfect square. Let ⁠ a 2 + b 2 / ab + 1 ⁠ = q and fix the value of q. If q = 1, q is a perfect square as desired. If q = 2, then (a-b) 2 = 2 and there is no integral solution ...

  3. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    [1] More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved. In this general sense, proof by contradiction is also known as indirect proof, proof by assuming the opposite, [2] and reductio ad ...

  4. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  5. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent "2n − 1 is odd": (i) For n = 1, 2n − 1 = 2(1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  6. Minimal counterexample - Wikipedia

    en.wikipedia.org/wiki/Minimal_counterexample

    In mathematics, a minimal counterexample is the smallest example which falsifies a claim, and a proof by minimal counterexample is a method of proof which combines the use of a minimal counterexample with the ideas of proof by induction and proof by contradiction. [1] [2] More specifically, in trying to prove a proposition P, one first assumes ...

  7. All horses are the same color - Wikipedia

    en.wikipedia.org/wiki/All_horses_are_the_same_color

    All horses are the same color is a falsidical paradox that arises from a flawed use of mathematical induction to prove the statement All horses are the same color. [1] There is no actual contradiction, as these arguments have a crucial flaw that makes them incorrect.