Search results
Results From The WOW.Com Content Network
There exists f : Σ* → Σ* such that for all w in Σ* we have: (′ ()); and there exists a polynomial-time Turing machine that halts with f ( w ) on its tape on any input w . Alternatively, if L ∈ NP, and there is another NP-complete problem that can be polynomial-time reduced to L , then L is NP-complete.
The Bekenstein bound limits the amount of information that can be stored within a spherical volume to the entropy of a black hole with the same surface area. Thermodynamics limit the data storage of a system based on its energy, number of particles and particle modes. In practice, it is a stronger bound than the Bekenstein bound. [1]
Las Vegas algorithms were introduced by László Babai in 1979, in the context of the graph isomorphism problem, as a dual to Monte Carlo algorithms. [3] Babai [4] introduced the term "Las Vegas algorithm" alongside an example involving coin flips: the algorithm depends on a series of independent coin flips, and there is a small chance of failure (no result).
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
Graphs of probabilities of getting the best candidate (red circles) from n applications, and k/n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory.
Probably the most interesting part of this theorem is that the Cauchy condition implies the existence of the limit: this is indeed related to the completeness of the real line. The Cauchy criterion can be generalized to a variety of situations, which can all be loosely summarized as "a vanishing oscillation condition is equivalent to convergence".
Illustration of the dining philosophers problem. Each philosopher has a bowl of spaghetti and can reach two of the forks. In computer science, the dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them.
For such a double limit to exist, this definition requires the value of f approaches L along every possible path approaching (p, q), excluding the two lines x = p and y = q. As a result, the multiple limit is a weaker notion than the ordinary limit: if the ordinary limit exists and equals L, then the multiple limit exists and also equals L. The ...