Search results
Results From The WOW.Com Content Network
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
The mitochondria contains its own set of DNA used to produce proteins found in the electron transport chain. The mitochondrial DNA only codes for about thirteen proteins that are used in processing mitochondrial transcripts, ribosomal proteins , ribosomal RNA , transfer RNA , and protein subunits found in the protein complexes of the electron ...
This ratio is variable and mitochondria from cells that have a greater demand for ATP, such as muscle cells, contain even more cristae. Cristae membranes are studded on the matrix side with small round protein complexes known as F 1 particles, the site of proton-gradient driven ATP synthesis. Cristae affect overall chemiosmotic function of ...
In practice the efficiency may be even lower because the inner membrane of the mitochondria is slightly leaky to protons. [16] Other factors may also dissipate the proton gradient creating an apparently leaky mitochondria. An uncoupling protein known as thermogenin is expressed in some cell types and is a channel that can transport protons.
Simplified structure of a mitochondrion. The intermembrane space (IMS) is the space occurring between or involving two or more membranes. [1] In cell biology, it is most commonly described as the region between the inner membrane and the outer membrane of a mitochondrion or a chloroplast.
Eukaryotic cells contain organelles including mitochondria, which provide energy for cell functions; chloroplasts, which create sugars by photosynthesis, in plants; and ribosomes, which synthesise proteins. Cells were discovered by Robert Hooke in 1665, who named them after their resemblance to cells inhabited by Christian monks in a monastery.
Mitochondrial biogenesis is the process by which cells increase mitochondrial numbers. [1] [2] It was first described by John Holloszy in the 1960s, when it was discovered that physical endurance training induced higher mitochondrial content levels, leading to greater glucose uptake by muscles. [3]
The dynamic nature of mitochondria is critical for function. Chen and Chan (2010) have discussed the molecular basis of mitochondrial fusion, its protective role in neurodegeneration, and its importance in cellular function. [8] The mammalian mitofusins Mfn1 and Mfn2, GTPases localized to the outer membrane, mediate outer-membrane fusion.