When.com Web Search

  1. Ad

    related to: algebraic opening morphology examples in real life

Search results

  1. Results From The WOW.Com Content Network
  2. Opening (morphology) - Wikipedia

    en.wikipedia.org/wiki/Opening_(morphology)

    The images below present a simple opening-by-reconstruction example which extracts the vertical strokes from an input text image. Since the original image is converted from grayscale to binary image, it has a few distortions in some characters so that same characters might have different vertical lengths.

  3. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    Mathematical Morphology was developed in 1964 by the collaborative work of Georges Matheron and Jean Serra, at the École des Mines de Paris, France.Matheron supervised the PhD thesis of Serra, devoted to the quantification of mineral characteristics from thin cross sections, and this work resulted in a novel practical approach, as well as theoretical advancements in integral geometry and ...

  4. Morphism - Wikipedia

    en.wikipedia.org/wiki/Morphism

    A category C consists of two classes, one of objects and the other of morphisms.There are two objects that are associated to every morphism, the source and the target.A morphism f from X to Y is a morphism with source X and target Y; it is commonly written as f : X → Y or X Y the latter form being better suited for commutative diagrams.

  5. Morphism of schemes - Wikipedia

    en.wikipedia.org/wiki/Morphism_of_schemes

    For example, Spec k[x] and Spec k(x) and have the same function field (namely, k(x)) but there is no rational map from the former to the latter. However, it is true that any inclusion of function fields of algebraic varieties induces a dominant rational map (see morphism of algebraic varieties#Properties.)

  6. Surface (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Surface_(mathematics)

    For example, the unit sphere is an algebraic surface, as it may be defined by the implicit equation x 2 + y 2 + z 2 − 1 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-1=0.} A surface may also be defined as the image , in some space of dimension at least 3, of a continuous function of two variables (some further conditions are required to ensure that ...

  7. Morphological analysis (problem-solving) - Wikipedia

    en.wikipedia.org/wiki/Morphological_analysis...

    General morphology was developed by Fritz Zwicky, the Bulgarian-born, Swiss-national astrophysicist based at the California Institute of Technology. Among others, Zwicky applied morphological analysis to astronomical studies and jet and rocket propulsion systems.

  8. Outline of algebraic structures - Wikipedia

    en.wikipedia.org/wiki/Outline_of_algebraic...

    In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a ...

  9. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Real algebraic geometry is the study of real algebraic varieties. The fact that the field of the real numbers is an ordered field cannot be ignored in such a study. For example, the curve of equation x 2 + y 2 − a = 0 {\displaystyle x^{2}+y^{2}-a=0} is a circle if a > 0 {\displaystyle a>0} , but has no real points if a < 0 {\displaystyle a<0} .