When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thymine - Wikipedia

    en.wikipedia.org/wiki/Thymine

    Thymine (/ ˈ θ aɪ m ɪ n /) (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nucleobase. In RNA, thymine is replaced by the nucleobase uracil.

  3. Thymidine phosphorylase - Wikipedia

    en.wikipedia.org/wiki/Thymidine_phosphorylase

    It has an S-shape with a length of 110 Å and a width of 60 Å. Each monomer is composed of 440 amino acids and is composed of a small α-helical domain and a large α/β domain. The surface of the enzyme is smooth except for a 10 Å deep and 8 Å wide cavity between the two domains that contains the thymine, thymidine, and phosphate binding ...

  4. Thymidine - Wikipedia

    en.wikipedia.org/wiki/Thymidine

    In its composition, deoxythymidine is a nucleoside composed of deoxyribose (a pentose sugar) joined to the pyrimidine base thymine. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP ( d eoxy t hymidine m ono p hosphate), dTDP , or dTTP (for the d i- and t ri- phosphates, respectively).

  5. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    Thymine and uracil are distinguished by merely the presence or absence of a methyl group on the fifth carbon (C5) of these heterocyclic six-membered rings. [2] [page needed] In addition, some viruses have aminoadenine (Z) instead of adenine. It differs in having an extra amine group, creating a more stable bond to thymine. [3]

  6. DNA synthesis - Wikipedia

    en.wikipedia.org/wiki/DNA_synthesis

    Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing (adenine and thymine, guanine and cytosine) occurs naturally when hydrogen bonds form between the nucleotide bases.

  7. Ribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Ribonucleotide

    Ribonucleotide reductase (RNR) is an essential enzyme for all living organisms since it is responsible for the last step in the synthesis of the four deoxyribonucleotides (dNTPs) necessary for DNA replication and repair. [10] The reaction also requires two other proteins: thioredoxin and thioredoxin reductase. Ribonucleoside diphosphate (NDP ...

  8. Thymidylate synthase - Wikipedia

    en.wikipedia.org/wiki/Thymidylate_synthase

    Thymidylate synthase is an enzyme of about 30 to 35 kDa in most species except in protozoan and plants where it exists as a bifunctional enzyme that includes a dihydrofolate reductase domain. [8] A cysteine residue is involved in the catalytic mechanism (it covalently binds the 5,6-dihydro-dUMP intermediate).

  9. Thymine-DNA glycosylase - Wikipedia

    en.wikipedia.org/wiki/Thymine-DNA_glycosylase

    The protein encoded by this gene belongs to the TDG/mug DNA glycosylase family. Thymine-DNA glycosylase (TDG) removes thymine moieties from G/T mismatches by hydrolyzing the carbon-nitrogen bond between the sugar-phosphate backbone of DNA and the mispaired thymine. With lower activity, this enzyme also removes thymine from C/T and T/T mispairings.