Search results
Results From The WOW.Com Content Network
This page is the template for the metabolic pathways template. This template should be used to illustrate the general 'shape' of metabolism within the cell. This template is part of the Metabolic Pathways task force. This template has been largely superseded by {{Metabolic metro}} but is kept as an archive
In addition to the two distinct metabolic pathways is the amphibolic pathway, which can be either catabolic or anabolic based on the need for or the availability of energy. [ 7 ] Pathways are required for the maintenance of homeostasis within an organism and the flux of metabolites through a pathway is regulated depending on the needs of the ...
A metabolic network is the complete set of metabolic and physical processes that determine the physiological and biochemical properties of a cell. As such, these networks comprise the chemical reactions of metabolism , the metabolic pathways , as well as the regulatory interactions that guide these reactions.
Simplified diagram of core eukaryotic metabolic network. Circles indicate metabolites and lines indicate conversions by enzymes. Glycolysis and citric acid cycle are highlighted in bold.
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
Major metabolic pathways in metro-style map. Click any text (name of pathway or metabolites) to link to the corresponding article. Single lines: pathways common to most lifeforms. Double lines: pathways not in humans (occurs in e.g. plants, fungi, prokaryotes). Orange nodes: carbohydrate metabolism. Violet nodes: photosynthesis.
Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [ 1 ]
"The metabolic pathway of glycolysis converts glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme. Steps 1 and 3 consume ATP (blue) and steps 7 and 10 produce ATP (yellow). Since steps 6-10 occur twice per glucose molecule, this leads to a net production of energy."