Search results
Results From The WOW.Com Content Network
Given a complex number z, there is not a unique complex number w satisfying erf w = z, so a true inverse function would be multivalued. However, for −1 < x < 1 , there is a unique real number denoted erf −1 x satisfying erf ( erf − 1 x ) = x . {\displaystyle \operatorname {erf} \left(\operatorname {erf} ^{-1}x\right)=x.}
The ERF method of finding a particular solution of a non-homogeneous differential equation is applicable if the non-homogeneous equation is or could be transformed to form () = + + +; where , are real or complex numbers and () is homogeneous linear differential equation of any order. Then, the exponential response formula can be applied to each ...
For example, in the checkerboard paradigm described above, healthy participants' first response of the visual cortex is around 50–70 ms. This would seem to indicate that this is the amount of time it takes for the transduced visual stimulus to reach the cortex after light first enters the eye .
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]
For example, if the source is known but the seed is not known (or vice versa). This property of extractors is particularly useful in what is commonly called Exposure-Resilient cryptography in which the desired extractor is used as an Exposure-Resilient Function (ERF).
For example, the log-normal function with such fits well with the size of secondarily produced droplets during droplet impact [56] and the spreading of an epidemic disease. [ 57 ] The value σ = 1 / 6 {\textstyle \sigma =1{\big /}{\sqrt {6}}} is used to provide a probabilistic solution for the Drake equation.
where is the Euler–Mascheroni constant which equals the value of a number of definite integrals. Finally, a well known result, ∫ 0 2 π e i ( m − n ) ϕ d ϕ = 2 π δ m , n for m , n ∈ Z {\displaystyle \int _{0}^{2\pi }e^{i(m-n)\phi }d\phi =2\pi \delta _{m,n}\qquad {\text{for }}m,n\in \mathbb {Z} } where δ m , n {\displaystyle \delta ...
R – real numbers. ran – range of a function. rank – rank of a matrix. (Also written as rk.) Re – real part of a complex number. [2] (Also written.) resp – respectively. RHS – right-hand side of an equation. rk – rank. (Also written as rank.) RMS, rms – root mean square. rng – non-unital ring. rot – rotor of a vector field.