When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transcription-translation coupling - Wikipedia

    en.wikipedia.org/wiki/Transcription-translation...

    Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...

  3. Eukaryotic transcription - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_transcription

    Eukaryotic Transcription. Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. [1] Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all ...

  4. Antitermination - Wikipedia

    en.wikipedia.org/wiki/Antitermination

    In molecular biology, antitermination is the prokaryotic cell's aid to fix premature termination during the transcription of RNA.It occurs when the RNA polymerase ignores the termination signal and continues elongating its transcript until a second signal is reached.

  5. Attenuator (genetics) - Wikipedia

    en.wikipedia.org/wiki/Attenuator_(genetics)

    The hybridization of strands 1 and 2 to form the 1–2 structure prevents the formation of the 2–3 structure, while the formation of 2-3 prevents the formation of 3–4. The 3–4 structure is a transcription termination sequence, once it forms RNA polymerase will disassociate from the DNA and transcription of the structural genes of the ...

  6. Translational regulation - Wikipedia

    en.wikipedia.org/wiki/Translational_regulation

    The hallmark difference of elongation in eukaryotes in comparison to prokaryotes is its separation from transcription. While prokaryotes are able to undergo both cellular processes simultaneously, the spatial separation that is provided by the nuclear membrane prevents this coupling in eukaryotes.

  7. Eukaryotic translation - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_translation

    Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.

  8. Bacterial translation - Wikipedia

    en.wikipedia.org/wiki/Bacterial_translation

    Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...

  9. Polyadenylation - Wikipedia

    en.wikipedia.org/wiki/Polyadenylation

    [33] [34] CPSF is in contact with RNA polymerase II, allowing it to signal the polymerase to terminate transcription. [ 35 ] [ 36 ] When RNA polymerase II reaches a "termination sequence" (⁵'TTTATT 3 ' on the DNA template and ⁵'AAUAAA 3 ' on the primary transcript), the end of transcription is signaled. [ 37 ]