Search results
Results From The WOW.Com Content Network
There are several known constructions of rank codes, which are maximum rank distance (or MRD) codes with d = n − k + 1.The easiest one to construct is known as the (generalized) Gabidulin code, it was discovered first by Delsarte (who called it a Singleton system) and later by Gabidulin [2] (and Kshevetskiy [3]).
Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Unsourced material may be challenged and removed. Find sources: "Ellipsis" computer programming – news · newspapers · books · scholar · JSTOR ( September 2014 ) ( Learn how and when to remove this message )
A linear code of length n and dimension k is a linear subspace C with dimension k of the vector space where is the finite field with q elements. Such a code is called a q-ary code. If q = 2 or q = 3, the code is described as a binary code, or a ternary code respectively.
Implementations of the singleton pattern ensure that only one instance of the singleton class ever exists and typically provide global access to that instance. Typically, this is accomplished by: Declaring all constructors of the class to be private , which prevents it from being instantiated by other objects
The Reed–Solomon code is a [n, k, n − k + 1] code; in other words, it is a linear block code of length n (over F) with dimension k and minimum Hamming distance = + The Reed–Solomon code is optimal in the sense that the minimum distance has the maximum value possible for a linear code of size ( n , k ); this is known as the Singleton bound .
In the Euclidean plane, seven disks of radius r/2 can cover any disk of radius r, so the plane is a doubling space with doubling constant 7 and doubling dimension log 2 7.. In mathematics, a metric space X with metric d is said to be doubling if there is some doubling constant M > 0 such that for any x ∈ X and r > 0, it is possible to cover the ball B(x, r) = {y | d(x, y) < r} with the union ...
A set such as {{,,}} is a singleton as it contains a single element (which itself is a set, but not a singleton). A set is a singleton if and only if its cardinality is 1. In von Neumann's set-theoretic construction of the natural numbers, the number 1 is defined as the singleton {}.
Any straight line or smooth curve is a one-dimensional space, regardless of the dimension of the ambient space in which the line or curve is embedded. Examples include the circle on a plane, or a parametric space curve. In physical space, a 1D subspace is called a "linear dimension" (rectilinear or curvilinear), with units of length (e.g., metre).