Search results
Results From The WOW.Com Content Network
Unprotected experiments in the U.S. in 1896 with an early X-ray tube (Crookes tube), when the dangers of radiation were largely unknown.[1]The history of radiation protection begins at the turn of the 19th and 20th centuries with the realization that ionizing radiation from natural and artificial sources can have harmful effects on living organisms.
Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.
For example, the study of environment, animals and plants around the Chernobyl disaster area has revealed an unexpected survival of many species, despite the high radiation levels. A Brazilian study in a hill in the state of Minas Gerais which has high natural radiation levels from uranium deposits, has also shown many radioresistant insects ...
After irradiating frogs and insects with X-rays in early 1896, Ivan Romanovich Tarkhanov concluded that these newly discovered rays not only photograph, but also "affect the living function". [18] At the same time, Pierre and Marie Curie discovered the radioactive polonium and radium later used to treat cancer .
The process of photosynthesis provides the main input of free energy into the biosphere, and is one of four main ways in which radiation is important for plant life. [115] The radiation climate within plant communities is extremely variable, in both time and space.
Radiation damage is the effect of ionizing radiation on physical objects including non-living structural materials. It can be either detrimental or beneficial for materials. Radiobiology is the study of the action of ionizing radiation on living things, including the health effects of radiation in humans.
Per unit of energy, alpha particles are at least 20 times more effective at cell-damage than gamma rays and X-rays. See relative biological effectiveness for a discussion of this. Examples of highly poisonous alpha-emitters are all isotopes of radium, radon, and polonium, due to the amount of decay that occur in these short half-life materials.
Characteristic X-rays are emitted when outer-shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element. Characteristic X-rays were discovered by Charles Glover Barkla in 1909, [ 1 ] who later won the Nobel Prize in Physics for his discovery in 1917.